img-logo
Instantaneous Velocity and Speed Class 11 Physics Notes

๐ˆ๐ง๐ญ๐ซ๐จ๐๐ฎ๐œ๐ญ๐ข๐จ๐ง ๐ญ๐จ ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ ๐š๐ง๐ ๐’๐ฉ๐ž๐ž๐

Instantaneous velocity and speed are key concepts in understanding motion at a specific moment. Instantaneous velocity is the rate at which an objectโ€™s position changes at a particular instant, including direction, making it a vector quantity. Instantaneous speed is the magnitude of this velocity, ignoring direction, and is a scalar.

 

These concepts help analyze precise motion and are essential in physics and real-world applications like engineering. By understanding them, one can describe how an object moves at any moment, offering more detail than average measurements.

 

๐Ÿ. ๐‚๐จ๐ง๐œ๐ž๐ฉ๐ญ ๐จ๐Ÿ ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ

Definition: Instantaneous velocity is the velocity of an object at a specific moment in time or at a specific point along its path.

Nature: It is a vector quantity, meaning it has both magnitude and direction.

๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐š๐ฅ ๐‘๐ž๐ฉ๐ซ๐ž๐ฌ๐ž๐ง๐ญ๐š๐ญ๐ข๐จ๐ง:

Where v is the instantaneous velocity, ฮ”x is the displacement over a small time interval ฮ”t, and dxโ€‹/dt represents the derivative of displacement x with respect to time t.

 

๐†๐ซ๐š๐ฉ๐ก๐ข๐œ๐š๐ฅ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฉ๐ซ๐ž๐ญ๐š๐ญ๐ข๐จ๐ง: On a position-time graph, the instantaneous velocity at a particular moment corresponds to the slope of the tangent drawn to the curve at that point.


Read Also: Newtonโ€™s Law of Cooling - Class 11 Physics Notes

 

๐Ÿ. ๐๐ซ๐จ๐ฉ๐ž๐ซ๐ญ๐ข๐ž๐ฌ ๐จ๐Ÿ ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ:

 

๐ƒ๐ข๐ซ๐ž๐œ๐ญ๐ข๐จ๐ง๐š๐ฅ ๐€๐ฌ๐ฉ๐ž๐œ๐ญ: It points in the direction of the motion at that instant.

 

๐‘๐ž๐ฅ๐š๐ญ๐ข๐จ๐ง ๐ญ๐จ ๐€๐ฏ๐ž๐ซ๐š๐ ๐ž ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ: When considering a very small time interval (ฮ”t โ‰ˆ0), the average velocity over that interval approaches the instantaneous velocity.

๐”๐ง๐ข๐ญ๐ฌ: The SI unit is meters per second (m/s).

 

๐Ÿ‘. ๐…๐ข๐ง๐๐ข๐ง๐  ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ

๐ƒ๐ž๐ซ๐ข๐ฏ๐š๐ญ๐ข๐ฏ๐ž๐ฌ: To find instantaneous velocity from a position function x(t), you need to differentiate x(t) with respect to (t). For example, if:

 x(t) = t^2 + 3t + 2,

then the instantaneous velocity \( v(t) \) is:

v(t) = dx/dt = 2t + 3.

 

๐Ÿ’. ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐’๐ฉ๐ž๐ž๐

๐ƒ๐ž๐Ÿ๐ข๐ง๐ข๐ญ๐ข๐จ๐ง: Instantaneous speed is the magnitude of the instantaneous velocity at a given moment.

๐๐š๐ญ๐ฎ๐ซ๐ž: It is a scalar quantity, meaning it only has magnitude and no direction.

 

๐‘๐ž๐ฅ๐š๐ญ๐ข๐จ๐ง ๐ญ๐จ ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ: Instantaneous speed is always positive and is equal to the absolute value of instantaneous velocity:

Instantaneous speed = |v|

 

๐Ÿ“. ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž๐ฌ ๐Ÿ๐จ๐ซ ๐๐ž๐ญ๐ญ๐ž๐ซ ๐”๐ง๐๐ž๐ซ๐ฌ๐ญ๐š๐ง๐๐ข๐ง๐ 

๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ: If a car's position at time t is given by x(t) = 4t^2, the instantaneous velocity can be found by differentiating x(t) with respect to t :

 

v(t) = dx/dt = 8t.

 

At t = 2 seconds, the instantaneous velocity is v(2) = 8 ร—2 = 16 m/s.

 

๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž ๐Ÿ: If a position-time graph is curved, the instantaneous velocity at any point is found by drawing a tangent to the curve at that point and calculating the slope of the tangent.

 

๐Ÿ”. ๐Š๐ž๐ฒ ๐ƒ๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž๐ฌ ๐๐ž๐ญ๐ฐ๐ž๐ž๐ง ๐ˆ๐ง๐ฌ๐ญ๐š๐ง๐ญ๐š๐ง๐ž๐จ๐ฎ๐ฌ ๐’๐ฉ๐ž๐ž๐ ๐š๐ง๐ ๐•๐ž๐ฅ๐จ๐œ๐ข๐ญ๐ฒ

๐๐š๐ญ๐ฎ๐ซ๐ž: Instantaneous speed is scalar, while instantaneous velocity is vectorial.

 

๐•๐š๐ฅ๐ฎ๐ž: Instantaneous speed is the magnitude of the instantaneous velocity and is always non-negative.

 

๐Ÿ•. ๐€๐ฉ๐ฉ๐ฅ๐ข๐œ๐š๐ญ๐ข๐จ๐ง๐ฌ

๐๐ก๐ฒ๐ฌ๐ข๐œ๐ฌ ๐š๐ง๐ ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐ : Understanding instantaneous velocity is crucial in motion analysis in kinematics and dynamics.

 

๐‘๐ž๐š๐ฅ-๐ฅ๐ข๐Ÿ๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: A speedometer in a car displays the instantaneous speed of the vehicle at any given moment.

 

๐Ÿ–. ๐๐ซ๐š๐œ๐ญ๐ข๐œ๐š๐ฅ ๐“๐ข๐ฉ๐ฌ ๐Ÿ๐จ๐ซ ๐๐ซ๐จ๐›๐ฅ๐ž๐ฆ๐ฌ

๐’๐ญ๐ž๐ฉ-๐›๐ฒ-๐’๐ญ๐ž๐ฉ ๐‚๐š๐ฅ๐œ๐ฎ๐ฅ๐š๐ญ๐ข๐จ๐ง:

 1. Identify the function for displacement x(t).

 2. Differentiate x(t) to find v(t).

 3. Substitute the specific time โ€˜tโ€™ if needed to find instantaneous velocity or speed.

 

๐†๐ซ๐š๐ฉ๐ก๐ข๐œ๐š๐ฅ ๐€๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ: Always ensure tangents are accurately drawn when working with graphs to find the slope.

 

๐‚๐จ๐ง๐œ๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:

Understanding instantaneous velocity and speed is essential for analyzing motion at a specific moment. Instantaneous velocity provides detailed insights into both the magnitude and direction of movement, while instantaneous speed focuses on just the magnitude. These concepts allow students to accurately describe and predict how objects behave in motion. Mastering them lays a strong foundation for more complex topics in physics and their applications in real-world scenarios.

ยฉ2023 Copyright - All Rights Reserved By Vivekananda Anglo Vedic Academy(Vava)
Careers | Privacy Policy | Terms & Conditions